the potassium salt. Solutions of anion 4 were stable at room temperature for at least 2 hr and, when kept at low temperature and quenched into pentane-water, produced (in low yield) a mixture containing 6,6-di-methyl-1,3,5-cyclooctatriene (5) as the major (97%) component. ${ }^{10}$

Of particular interest is the observation that 4 is also produced by disrotatory opening upon photolysis ${ }^{11}$ of the (potassium) 8,8-dimethylbicyclo[5.1.0]octadienyl anion ${ }^{12}$ (6) in liquid ammonia. A photoequilibrium appeared to be established since the ratio of the nmr signals for 4 and 6 remained constant at $c a .1: 3$ on prolonged irradiation. This was confirmed by the observation that the same solution of 4 and 6 is produced by

irradiation of 4 (in ammonia- d_{3}). This is the first example of a reversible photochemical electrocyclization of a carbanion and is also the first case in which both reactant and product have been directly observed in a photochemical electrocyclization of a carbanion. ${ }^{13}$

Whereas minimization of antibonding interactions between the π orbitals at C_{1} and C_{7} may be best achieved in a planar conformation of $4,{ }^{14}$ this will introduce bond angle strain which might be more detrimental energetically than any increase in antihomoaromaticity expected in a folded conformation (7). ${ }^{15}$ The observation of a six-proton singlet for the methyl protons at -77° is compatible with either a planar conformation or a rapidly flipping folded conformation where ΔG^{\neq}is estimated to be $<10 \mathrm{kcal} / \mathrm{mol} .^{16}$ However, the fact that J_{23} in $4(9.0 \mathrm{~Hz})$ is significantly smaller than J_{23} in the methylenecyclooctatrienyl anion $8(10.5 \mathrm{~Hz}),{ }^{17}$ despite the near identity of the corresponding self-consistent HMO π-bond orders (0.55 and 0.57 , respectively), suggests that the former anion may be folded, as in 7. Finally, although the signals for H_{1} and H_{7} appear at a lower field than usual for

[^0]

7

8
protons on negatively charged carbons, the question of whether 4 displays any "antihomoaromatic" behavior cannot be answered without detailed reference to appropriate model compounds.

Acknowledgment. We are pleased to acknowledge the support of this work by the National Science Foundation.

Stuart W. Staley,* Neil J. Pearl
Department of Chemistry, University of Maryland College Park, Mayland 20742
Received December 2I, 1972

Structural Study of a Ruthenium Hydride Cluster by Nematic-Phase Proton Magnetic Resonance

Sir:
The difficulties in establishing hydride proton positions in transition metal hydrides are well known. ${ }^{1}$ We wish to report the structural information obtained from a study of the proton magnetic resonance of the recently synthesized ${ }^{2}$ compound $\mathrm{H}_{3} \mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{CCH}_{3}$ (I) dissolved in the nematic phase of a liquid crystal.

Several spectra of width 5000 Hz were obtained on a Varian XL-100-15 spectrometer in Fourier-transform mode at probe temperature (37°) using a saturated solution of I in the Vari-Light liquid crystal VL-$3268-\mathrm{N}$ (less than 10 mg of solute $/ 0.5 \mathrm{ml}$ of solvent). The $5-\mathrm{mm}$ sample tube was placed coaxially inside a $12-\mathrm{mm}$ tube (nonspinning) containing $\mathrm{D}_{2} \mathrm{O}$ as a heteronuclear lock. Resultant line widths at half-height were approximately 10 Hz .

Assuming I has $C_{3 v}$ symmetry (Figure 1), as deduced by Canty, et al., ${ }^{2}$ only one orientation parameter $S_{z z}$ is required to characterize its orientation. ${ }^{3}$ The nearly first-order spectra display the expected two groups of triplets of quartets (Figure 2). The dipolar couplings $T_{i j}$, defined by

$$
\begin{equation*}
T_{i j}=-\frac{\hbar \gamma_{i} \gamma_{j}}{2 \pi r_{i j}{ }^{3}}\left(3 \cos ^{2} \beta_{i j}-1\right) S_{2 z} \tag{1}
\end{equation*}
$$

where $r_{i j}$ is the distance between nuclei i and j, γ_{i} and γ_{j} are magnetogyric ratios, and $\beta_{i j}$ is the angle between the internuclear vector and the z axis (the symmetry axis), were obtained from a modified version of the LAOCOON 2 nmr program. ${ }^{4}$ This program iterates on dipolar couplings and chemical shifts to give the best agreement with weighted experimental frequencies and calculates the corresponding uncertainties in the computed dipolar couplings. The best fit values are given in Table I. Indirect couplings between methyl protons and hydride protons were taken to be zero, ${ }^{2}$ and the indirect couplings between fully equivalent nuclei

[^1]

Figure 1. Schematic diagram of $\mathrm{H}_{3} \mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{CCH}_{3}$ (I) not showing carbonyl groups.

Table I. Nmr Parameters for I Dissolved in VL-3268-N at 37°

$T_{\text {intra-Me }}$	$\pm 801.4 \pm 1.1 \mathrm{~Hz}$
$T_{\text {intra-hydride }}$	$\pm 294.2 \pm 1.2 \mathrm{~Hz}$
$T_{\text {inter }}$	$\mp 82.4 \pm 0.8 \mathrm{~Hz}$
Rms error in fitting	
spectrum	2.2 Hz
$S_{z z}$	$\pm 0.03764 \pm 0.00005^{a}$

${ }^{a}$ Assuming $r_{\text {intra-Me }}$ from Table II is exact.
do not affect the spectrum when anisotropies in these couplings are negligible. Both $T_{\text {intra-Me }}$ and $T_{\text {intra-hydride }}$ must be of like sign since β in eq 1 is 90° for both; $T_{\text {inter }}$, the dipolar coupling between methyl and hydride protons, was found to be of opposite sign (see below).

Because the experimental dipolar couplings can yield only ratios of internuclear distances (neglecting vibrational corrections), estimates of internuclear distances were made (Table II). $S_{2 z}$ was computed from eq 1 using $r_{\text {intra-Me }}$ and the observed $T_{\text {intra-Me }}$. Both $r_{\text {intra-hydride }}$ and $r_{\text {AD }}$ (Figure 1) were then calculated, the latter from a numerical integration program which evaluated $T_{\text {inter }}$ from eq 1 for a rapidly rotating methyl group at constant distance from the plane of the hydride protons (two other values of this distance which reproduced $\left|T_{\text {inter }}\right|$ were less than $0.5 \AA$ and were thus rejected as unreasonable).

In order to determine the position of the hydride protons with respect to the ruthenium framework, we used the values of $r_{\mathrm{C}_{-\mathrm{CH}}}, r_{\mathrm{Ru}-\mathrm{Ru}}$, and $r_{\mathrm{Ru}-\mathrm{C}}$ in Table II. If the hydride protons are eclipsed with respect to the ruthenium atoms, a ruthenium-hydride proton distance of $1.10 \AA$ is obtained. This is much smaller than

Figure 2. Experimental nematic-phase spectrum of I and calculated spectrum without liquid crystal background absorption.

Table II. Assumed and Calculated Geometrical Parameters

$r_{\text {intra-Me }}$	$1.780 \AA^{\text {a }}$	assumedcalcd
$\mathrm{r}_{\mathrm{C}-\mathrm{CH}_{3}}$	$1.520 \AA^{\circ}{ }^{\text {b }}$	
$r_{\text {Ru-C(apical }}$	$2.050 \mathrm{~A}^{\text {c }}$	
$r_{\text {Ru-Ru }}$	$2.930 \mathrm{~A}^{\text {d }}$	
$r_{\text {intra-hydride }}$	$2.486 \pm 0.004 \mathrm{~A}^{\text {e }}$	
$r_{\text {AD }}$ (Figure 1)	$4.115 \pm 0.020 \AA^{\circ}$	
$r_{B D}$ (Figure 1)	$1.065 \pm 0.020 \AA$	
$r_{\text {Ru }}$	$1.905 \mathrm{~A}^{\text {f }}$	
$\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$	$101{ }^{\circ}$	

a Obtained by multiplying the average ratio of $r_{\mathrm{H}-\mathrm{E}} / r_{\mathrm{C}-\mathrm{H}}$ obtained for methyl cyanide in several liquid crystals by an assumed r_{C-H} of 1.093 A: P. Diehl and C. L. Khetrapal, "NMR Basic Principles and Progress," Vol. 1, Springer-Verlag, Berlin, 1969, pp 40-41; L. Nygaard, Spectrochim. Acta, 22, 1261 (1966). ${ }^{\text {b }}$ From X-ray results on similar cobalt clusters: P. W. Sutton and L. F. Dahl, J. Amer. Chem. Soc., 89, 261 (1967); M. D. Brice, B. R. Penfold, W. T. Robinson, and S. R. Taylor, Inorg. Chem., 9, 362 (1970). ${ }^{c}$ Estimated by adding to the Co-C distance of $1.92 \AA$ in similar clusters the increase in metal-carbon distance of $0.13 \AA$ observed in a tetranuclear cluster upon replacing Co by Ru , footnote b; F. Klanberg, W. B. Askew and L. J. Guggenberger, Inorg. Chem., 7, 2265 (1968); G. Allegra and S. Valle, Acta Crystallogr., Sect. B, 25, 107 (1969); D. Seyferth, R. J. Spohn, M. R. Churchill, K. Gold, and F. R. Scholer, J. Organometal. Chem., 23, 237 (1970); L. F. Dahl and D. L. Smith, J. Amer. Chem. Soc., 84, 2450 (1962); R. Mason and K. M. Thomas, J. Organometal. Chem., 43, C39 (1972). \quad From various X-ray studies of ruthenium clusters with bridging hydrides: M. Evans, M. Hursthouse, E. W. Randall, E. Rosenberg, L. Milone, and M. Valle, J. Chem. Soc., Chem. Commun., 545 (1972); A. Cox and P. Woodward, J. Chem. Soc. A, 3599 (1971); A. W. Parkins, E. O. Fischer, G. Huttner, and D. Regler, Angew. Chem., 82, 635 (1970); D. B. W. Yawney and R. J. Doedens, Inorg. Chem., 11, 838 (1972). © Assuming $S_{z z}$ from Table I. If $r_{\text {intra-Me }}$ were actually $1.790 \AA, r_{\text {intra-bydride }}$ would become $2.500 \AA$ and $r_{\text {AD }} 4.145 \AA$. f An increase of $0.02 \AA$ in r_{AD} increases $r_{\mathrm{Ru}-\mathrm{H}}$ from 1.905 to $1.916 \AA$; the changes in (e) increase $r_{R u-H}$ to $1.924 \AA$; an increase of $0.05 \AA$ in $r_{R u-C}$ lowers $r_{\mathrm{Ru}-\mathrm{H}}$ to $1.858 \AA$; an increase of $r_{\mathrm{Ru}} \mathrm{Ru}$ by $0.003 \AA$ increases $r_{\mathrm{Ru}-\mathrm{H}}$ to $1.907 \AA$; the angle $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ always remains within 3° of 101°.
any known transition metal-proton bond length. ${ }^{1}$ Since the ${ }^{13} \mathrm{C} \mathrm{nmr}$ shows that two carbonyl groups on each ruthenium are equivalent, ${ }^{2}$ a symmetrically bridged structure is indicated, but an asymmetric arrangement in which the protons jump from one equilibrium position to another is not excluded. Assuming
a symmetrical bridge a ruthenium-proton distance of $1.90 \AA$ and a $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ angle of 101° is obtained.

Acknowledgments. We thank the Winston Churchill Foundation of the United States for a Churchill Scholarship to J. P. Y., the Royal Commission for the Exhibition of 1851 for a Scholarship to A. J. C., and the Royal Society for a Pickering Research Fellowship to A. J. R.

A. D. Buckingham,* J. P. Yesinowski
Department of Theoretical Chemistry University Chemical Laboratory Cambridge, United Kingdom
A. J. Canty
Department of Inorganic Chemistry University Chemical Laboratory Cambridge, United Kingdom

A. J. Rest

Department of Physical Chemistry University Chemical Laboratory Cambridge, United Kingdom Received February 15, 1973

Concerning a Reported Change in Rate-Determining Step in Chymotrypsin Catalysis ${ }^{1}$

Sir:
A pH -induced change in the rate-determining step has been proposed for the chymotrypsin-catalyzed hydrolysis of formylphenylalanine formylhydrazide. ${ }^{2}$ The basis of this proposal was a discrepancy between the $\mathrm{p} K$ of the Michaelis complex as determined from $V_{\max }$ and K_{m} measurements; values equal to 6.08 and 6.7 , respectively, were determined from these kinetic parameters. The asymmetry of the proposed kinetic mechanism (Scheme I, where ES, ES', and AcE represent
Scheme I

the Michaelis complex, a tetrahedral intermediate and acyl enzyme, respectively, and the site of proton addition is His-57) permits a change in the rate-determining step; at low $\mathrm{pH} k_{2}{ }^{\prime}\left(\mathrm{EHS}^{\prime}\right)>k_{-1}\left(\mathrm{ES}^{\prime}\right)$ so that the attack step (k_{1}) is rate limiting, and at high $\mathrm{pH} k_{-_{1}}$ $\left(\mathrm{ES}^{\prime}\right)>k_{2}\left(\mathrm{ES}^{\prime}\right)$ and $k_{2}{ }^{\prime}\left(\mathrm{EHS}^{\prime}\right)$, so that tetrahedral intermediate breakdown to the acyl enzyme is rate limiting. The change in the rate-determining step presumably makes the $\mathrm{p} K$ influencing $V_{\max }$ a "kinetic constant" which is lower than that influencing K_{m}. This interpretation was supported by studies of proton release associated with substrate binding; ${ }^{3}$ as is required by the suggested mechanism no protons were found to be rapidly released. In disagreement with the earlier results ${ }^{2}$ we have found the same pK (6.0-

[^2]6.1) for the Michaelis complex from both $V_{\max }$ and K_{m} measurements. ${ }^{4}$

The distinctive feature of the proposed mechanism ${ }^{2}$ (Scheme I) is the involvement of both imidazole and imidazolium paths in the formation and breakdown of the tetrahedral intermediate from the acyl enzyme: the k_{2}, k_{-2} and $k_{2}{ }^{\prime}, k_{-2}{ }^{\prime}$ reactions in Scheme I. To test this mechanism we have looked for the imid-azolium-catalyzed path (k_{-2}) in the attack of formylhydrazine on a formylphenylalanyl enzyme; i.e., the reverse of the reaction previously studied. ${ }^{2}$ We have found that there is no reaction involving the imidazole conjugate acid. This result does not appear to be consistent with Scheme I.

The rate law for formation of formylphenylalanine formylhydrazide from a formylphenylalanyl enzyme (generated from the corresponding methyl ester ${ }^{5}$) is
obsd $k_{\text {amine }} /($ amine $)=$
$\frac{\frac{k_{-1} k_{-2} K_{\mathrm{a}}{ }^{\prime \prime \prime} K_{\mathrm{a}}{ }^{\prime \prime}}{(H)^{2}{k_{2}}^{\prime}}+\frac{k_{-1} k_{-2}{ }^{\prime} K_{\mathrm{a}}{ }^{\prime \prime}}{(H) k_{2}{ }^{\prime}}}{1+\frac{\left(k_{-1}+k_{2}\right) K_{\mathrm{a}}{ }^{\prime \prime \prime} K_{\mathrm{a}}{ }^{\prime \prime}}{(H)^{2} k_{2}{ }^{\prime}}+\frac{k_{2}{ }^{\prime} K_{\mathrm{a}}{ }^{\prime \prime \prime}+\left(k_{-1}+k_{2}\right) K_{\mathrm{a}}{ }^{\prime \prime}}{(H) k_{2}{ }^{\prime}}}$

At high and low pH this reduces to eq 2 and 3, respectively.

$$
\begin{align*}
& \text { obsd } k_{\text {amine }} /(\text { amine })=k_{-1} k_{-2} /\left(k_{-1}+k_{2}\right) \tag{2}\\
& \text { obsd } k_{\text {amine }} /(\text { amine })=k_{-1} k_{-2}{ }^{\prime}{K_{\mathrm{a}}}^{\prime \prime} /(H) k_{2}{ }^{\prime} \tag{3}
\end{align*}
$$

Hydrolysis of the formylphenylalanyl enzyme follows the rate law

$$
\begin{equation*}
\operatorname{obsd} k_{\mathrm{H}_{2} \mathrm{O}}=k_{\mathrm{H}_{2} \mathrm{O}}{K_{\mathrm{a}}}^{\prime \prime \prime} /\left(K_{\mathrm{a}}^{\prime \prime \prime}+(H)\right) \tag{4}
\end{equation*}
$$

Measured values of $k_{\mathrm{H}_{2} \mathrm{O}}\left(V_{\max }\right)$ and $\mathrm{p} K_{\mathrm{a}}{ }^{\prime \prime \prime}$ were found to be equal to $85 \mathrm{sec}^{-1}$ and 6.85 , respectively (ionic strength $0.1,25^{\circ}$). The apparently "normal" value of the $\mathrm{p} K$ for acyl enzyme hydrolysis suggests that this reaction does not involve a pH -dependent change in the rate-determining step (as was suggested for acyl enzyme aminolysis ${ }^{2}$) so that the $\mathrm{p} K$ obtained from the kinetics of the hydrolysis reaction is likely to be equal to $K_{\mathrm{a}}{ }^{\prime \prime \prime}$ in Scheme I, rather than a complex constant, as was proposed for the acyl enzyme aminolysis. ${ }^{6}$ We are not aware of any evidence suggesting a pH dependent change in the rate-determining step in acyl enzyme hydrolysis. The result of the fact that there is only a single path for acyl enzyme hydrolysis (equiva-
(4) E. C. Lucas, M. Caplow, and K. J. Bush, ibid., 95, 2670 (1973).
(5) (a) That the reactions of the formylphenylalanine methyl ester and formylhydrazide go by the same acyl enzyme path was demonstrated by studying the effect of formylhydrazine on the hydrolysis of the formylhydrazide (see ref 5 b for the rationale here). Formylhydrazine decreases the rate of this reaction and the decrease was equal to that predicted from studies of the partitioning of the acyl enzyme formed from the methyl ester; (b) M. Caplow and W. P. Jencks, J. Biol. Chem., 239, 1640 (1964).
(6) If identical mechanisms are assumed for acyl enzyme aminolysis and hydrolysis, the rate expression for hydrolysis will resemble eq 1. Both aminolysis and hydrolysis will have two kinetic $\mathrm{p} K^{\prime \prime} \mathrm{s}$, equal to $\left[k_{\mathrm{a}}{ }^{\prime} K_{\mathrm{a}}{ }^{\prime \prime \prime}+\left(k_{-1}+k_{\mathrm{z}}\right) K_{\mathrm{a}}{ }^{\prime}{ }^{\prime}\right] / k_{2}{ }^{\prime}$ and $\left[\left(k_{-1}+k_{2}\right) K_{\mathrm{a}}{ }^{\prime \prime \prime} K_{\mathrm{a}}{ }^{\prime \prime}\right] /\left[k_{\mathrm{a}_{2}}{ }^{\prime} K_{\mathrm{a}}{ }^{\prime \prime \prime}{ }^{\prime \prime}+\right.$ $\left.\left(k_{-1}+k_{2}\right) K_{\mathrm{a}}{ }^{\prime \prime}\right]$, and these will undoubtedly be different for the two reactions. Also, for eq 1 to generate the observed simple sigmoidal pH -rate profile, it is required that in both hydrolysis and aminolysis $K_{\mathrm{a}}{ }^{\prime \prime \prime}=K_{\mathrm{a}}{ }^{\prime \prime}, k_{-1}>k_{-2}+k_{-2^{\prime}}^{\prime}$ and $k_{-2}=k_{-2}^{\prime}$. It is virtually inconceivable that all of these requirements are met for both reactions. The observation of an identical pH dependence for acyl enzyme hydrolysis and aminolysis would appear to dispose of the notion that Scheme I holds for both reactions.

[^0]: (10) $\mathrm{Nmr}\left(\mathrm{CCl}_{4}\right)$: three two-proton multiplets centered at $\delta 6.02$, 5.72 , and 5.45 (olefinic), a multiplet at $2.23(2 \mathrm{H}$, methylene), and a singlet at $1.05(6 \mathrm{H}$, methyl $)$; uv (hexane) $\lambda_{\max } 261 \mathrm{~nm}(\epsilon 3850)$.
 (11) A 0.1 M solution of 6 was irradiated through Pyrex with a 275-W GE sunlamp.
 (12) Anion 6 was prepared by reaction of potassium amide in liquid ammonia with 8,8 -dimethylbicyclo[5.1.0]octa-2,4-diene. The latter was prepared from 8,8-dibromobicyclo[5.1.0]octa-2,4-diene (from an extension of the procedure of A. P. ter Borg and A. F. Bickel, Recl. Trav. Chim. Pays-Bas, 80, 1217 (1961)) by methylation with lithium dimethylcopper (E. J. Corey and G. H. Posner, J. Amer, Chem. Soc., 89, 3911 (1967)).
 (13) H. Kloosterziel and G. M. Gorter-la Roy (J. Chem. Soc., Chem. Commun., 352 (1972)) have postulated the intermediacy of the cyclooctatrienyl anion in the photochemical conversion of the (potassium) bicyclo[5.1.0]octadienyl anion to the cyclooctatetraene dianion in liquid ammonia.
 (14) M. Feldman and W. C. Flythe, J. Amer. Chem. Soc., 93, 1547 (1971).
 (15) Cyclononatrienyl anions have recently been shown to be significantly bent; S. W. Staley and N. J. Pearl, manuscript submitted for publication.
 (16) This value of ΔG^{\ddagger} was calculated by assuming a difference of 0.65 ppm in the chemical shifts of the methyl groups in the hypothetical conformation 7. This is the chemical-shift difference for the methyl protons in 6 and is probably a high estimate. (See F. Bovey, "Nuclear Magnetic Resonance Spectroscopy," Academic Press, New York, N. Y., 1969. Chapter VII.)
 (17) S. W. Staley and G. M. Cramer, manuscript submitted for publication.

[^1]: (1) B. A. Frenz and J. A. Ibers, "The Hydrogen Series," Vol. 1, "Transition Metal Hydrides," Marcel Dekker, New York, N. Y., 1971, p 33.
 (2) A. J. Canty, B. F. G. Johnson, J. Lewis, and J. R. Norton. J. Chem. Soc., Chem. Commun., 1331 (1972).
 (3) A. D. Buckingham and K. A. McLauchlan, Progr. Nucl. Magn. Res. Spectrosc. 2. 63 (1967).
 (4) D. Bailey, A. D. Buckingham, M. C. McIvor. and A. J. Rest, Mol. Phys., 25, 479 (1973).

[^2]: (1) This investigation was supported by a Public Health Service Research Career Development Award to M. C. (1-K4-GM-10. 010-02) from the National Institutes for General Medical Studies and by a grant (DE03246) from the National Institutes of Health.
 (2) A. R. Fersht and Y. Raquena, J. Amer. Chem. Soc., 93, 7079 (1971).
 (3) A. R. Fersht, ibid., 94, 293 (1972).

